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c© Società Italiana di Fisica
Springer-Verlag 2000

Neutron matter with a model interaction
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Abstract. An infinite system of neutrons interacting by a model pair potential is considered. We investigate
a case when this potential is sufficiently strong attractive, so that its scattering length a tends to infinity,
a → −∞. It appeared, that if the structure of the potential is simple enough, including no finite parameters,
reliable evidences can be presented that such a system is completely unstable at any finite density. The
incompressibility as a function of the density is negative, reaching zero value when the density tends to
zero. If the potential contains a sufficiently strong repulsive core then the system possesses an equilibrium
density. The main features of a theory describing such systems are considered.

PACS. 24.10.Cn Many-body theory – 21.10.Dr Binding energies

There exists a well known problem in many body physics
related to the description of the ground state properties
of an infinite system composed of interacting fermions. In
general, this description is based usually on tedious nu-
merical calculations, particularly when the interaction is
rather strong. The well known exceptions from this sit-
uation, when it is possible to calculate the ground state
properties analytically, are the Random Phase Approxi-
mation (RPA) for a high density electron gas [1] and the
low density approximation for dilute gases [2]. In both
cases the kinetic energy Tk is much bigger then the in-
teraction energy Eint of the system. This allows to apply
some kind of a perturbation theory. In the case of homoge-
neous electron liquid it turns out that the analytical RPA-
like description is also possible not only at very high but
medium densities when Tk ∼ Eint [3,4]. Similar extension
of the range of validity is impossible in the case of fermion
systems at low densities ρ: there the gas approximation
is not applicable if Tk ∼ Eint. In the cases when the pair
interaction is attractive and sufficiently strong, the sys-
tem can have a quasi equilibrium or equilibrium states
in which Tk � Eint. On the other hand, these states are
preceded by special points with density ρ values at which
the incompressibility K(ρ) of the system tends to zero.
Thus, if it would be possible to predict the existence of
such points then in principle it would become possible to
conclude that the system has at least a quasi equilibrium
state.

In this Short note we address the above mentioned
problem and consider the ground state properties of the
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infinitely extended multi-fermion system. We demonstrate
that it can be done analytically provided that the pair in-
teraction between fermions is characterized only by the
scattering length a → −∞. One can say in this case that
the scattering length is the dominant parameter of the
problem under consideration. Such an investigation is of
great importance since it can be applied to fermion sys-
tems interacting via potentials with not only infinite, but
also sufficiently large a. For instance, the scattering length
a of neutron-neutron interaction is about −20 fm, thus
greatly surpassing the radius of the interaction r0. On
the other hand, it is possible now to prepare artificially
a system composed of Fermi atoms interacting by an ar-
tificially constructed potential with almost any desirable
scattering length, similarly to that how it is done for the
trapped Bose gases, see e.g. [5]. An experimental study,
performed on such Fermi-system would be of great im-
portance presenting new information on the behavior of
dilute gases and the gas-liquid phase transition.

Let us consider the interaction of two isolated parti-
cles. We assume that this interaction is of finite radius
r0, which is small, so that pF r0 � 1 (pF = (3π2ρ)1/3 is
the Fermi momentum), but its strength is such that the
scattering length is negative and infinitely big, a → −∞.
We assume also, that the density ρ of the system under
consideration is homogeneous. As it will be demonstrated
below, in such a case the system is located in the vicin-
ity of a phase transition, transforming it into a strongly
correlated one. Therefore, the problem of calculating its
ground state properties has to be treated for the most part
qualitatively.
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Let us start considering general properties of a Fermi
system with some attractive two-particle bare interaction
V (r), which is sufficiently weak to create a two-particle
bound state. Assume, that the scattering length a cor-
responding to this potential is negative and finite. The
ground state energy density E(ρ) can be approximated
by Skyrme-like expression [6],

E(ρ) =
3p2

F

10M
ρ + t0ρ

2 + t3ρ
7/3, (1)

Here M is the particle mass, and ρ is their density in the
system. The first term of (1) is the kinetic energy Tk, while
the second and the third are related to the interaction en-
ergy Eint determined by the potential V (r). The second
term which is proportional to t0 gives a proper description
in the gas limit. The third term provides the behavior of
E(ρ) at higher densities, including that of the equilibrium
density. Such structure of E(ρ) appears if the interaction
is sufficiently attractive so that t0 < 0, and t3 > 0. Note,
that (1) presents at least a qualitative description of the
system under consideration giving a rather simple and rea-
sonable presentation of the function E(ρ). A more precise
picture of the energy dependence upon density can be ob-
tained using more sophisticated functionals for the ground
state energy [7].

If the potential V is of short range and purely attrac-
tive, then in the Hartree-Fock approximation the ground
state energy EHF is given by the following expression

EHF (ρ) =
3p2

F

10M
ρ + tHF ρ2, (2)

where the parameter t0 = tHF , being negative, is entirely
determined by the potential V (r). For instance, in the case
of a short range δ-type interaction one has tHF = −v0/4,
with v0 being the corresponding strength of the potential.
Equation (2) shows that at small densities EHF > 0 due
to the kinetic energy term, but at sufficiently high densi-
ties ρ → ∞ the Hartree-Fock energy becomes dominating,
leading to the collapse of the system, with EHF → −∞.
Keeping in mind that the Hartree-Fock approximation
gives the upper limit to the binding energy EHF ≥ E, one
can conclude that the system does not have, in this case,
an equilibrium density ρe and energy Ee since Ee → −∞
when ρ → ∞ [8]. Note, that for a given and finite total
number of particles N , the HF energy is not going to in-
finity and the system collapses into a small volume with
the radius r0, with the density ρ ∼ N/r3

0. It is evident
that the function E(ρ) is positive at small densities, if the
parameter t0 is finite. Therefore, it must have at least one
maximum at the density ρm before it becomes negative,
on the way to E → −∞. If the potential V (r) includes a
repulsive core at sufficiently short distances, then t3 > 0 .
As a result, the system has an equilibrium density and en-
ergy, ρe and Ee, respectively, determined by the repulsive
core strength and its radius rc ∼ r0.

Now let us apply (1) to demonstrate the most impor-
tant features of the system under consideration:

a) when ρ → 0 the third term on r.h.s. in (1) can be
omitted. The kinetic energy is relatively very big, Tk �

Eint, and t0 ∼ a, with a < 0 being the scattering length. In
that case we have a dilute Fermi gas with positive pressure
P and incompressibility K, the latter being determined by
the equation, see e.g. [9],

K(ρ) = ρ2 dE
2(ρ)

dρ2
. (3)

b) on the way to higher densities, which can be
achieved by applying an external pressure, the system
reaches the density ρc1 < ρm at which the incompress-
ibility is equal to zero, K(ρc1) = 0. Remembering that
at the maximum the second derivative is negative, one
can conclude, as it is seen from (3), that K(ρm) < 0. In
the range ρc2 ≥ ρ ≥ ρc1 the incompressibility is nega-
tive, K < 0, and as a result the system becomes totally
unstable. In fact, in this density range all calculations
of the ground state energy are meaningless since such a
system cannot exist and thus be observed experimentally
[10];

c) at some point ρ = ρc2 > ρm the contribution due to
the repulsive core becomes sufficiently strong to prevent
the further collapse of the system. The incompressibility
attains K = 0 at ρc2 < ρe, being positive at the higher
densities. Finally, the system becomes stable at ρ > ρc2,
reaching equilibrium density at ρe with equilibrium en-
ergy equal to Ee. It is obvious that K(ρe) > 0 being pro-
portional to the second derivative at the minimum, see
(3). It should be kept in mind that in this density do-
main, ρ ≥ ρc2, the function E(ρ) is determined by the
repulsive part of the potential which makes t3 > 0. As it
was mentioned above, without this component of V (r) the
system’s energy would infinitely increase, EHF → −∞,
with density growth, ρ → ∞, thus inevitably collaps-
ing.

One could expect in principle the existence of
metastable states at ρ > ρc1 if the potential V (r), even
being pure attractive, would have a complicated struc-
ture. It can be said that there could exist parameters
of V (r), which are able to open the possibility for the
metastable states to be formed. On the other hand, a
system of fermions interacting via a short-range, finite
scattering-length, δ-type potential Vδ , can be stable only
in the dilute gas regime. While at the densities ρ ≥ ρc1

the incompressibility K becomes negative, the system col-
lapses. Indeed, the potential Vδ has no structure to ensure
any metastable states at the densities ρ ≥ ρc1. As a re-
sult, one can write down a dimensionless expression for
the ground state energy as a function of the only variable
z = pFa [2,11],

αE(z) = z5(1 + β(z)), (4)

with α = 10π2Ma5. In the low density limit, |apF | � 1
and when the interaction has the radius r0, (4) reads [11],

αE(z) = z5

[
1 +

10
9π

z +
4

21π2
(11 − 2 ln 2)z2

+
(r0
a

)3

z3γ
(r0
a
, z

)
+ ...

]
. (5)
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Here the function γ(y, z) is of the order of one, γ(y, z) ∼ 1.
It is seen from (5) that as soon as the scattering length
becomes big enough, |a| � r0, one can omit the contribu-
tion coming from the function γ and neglect all the term
proportional to (r0/a)3. Then (5) reduces to (4). Thus, in
the case |a| → ∞ we can use (4) to determine the ground
state energy E. Equation (4) is valid up to the density
ρc1 which is a singular point of the function β(z), since
beyond this point K < 0, and the system is completely
unstable. On the other hand, there is no physical reasons
to have another irregular point in the region 0 ≤ ρ ≤ ρc1.
We note, that (5) is as well valid up to its own density
ρ

′
c1 � ρc1, provided |a| � r0. Using (3) for the incom-

pressibility, one can calculate the position of the point zc1

where K = 0. Denoting the corresponding z as zc1 = c0,
where c0 is a dimensionless number, one is led to the con-
clusion that ρc1 ∼ |a|−3 provided a is sufficiently large to
be the only dominating parameter. The system has only
one stable region at small densities ρ ≤ ρc1 which de-
creases and even vanishes as soon as a → −∞. One could
expect that |c0| → ∞ as soon as a becomes the dominant
parameter so that the above given expression for β(z) is
valid in the whole domain |z| ≤ ∞. On the other hand,
there exists another singular point zc2 in the function E(ρ)
and the position of this point which corresponds to ρc2 de-
pends mainly on the parameters such as r0, core radius rc

of V (r) rather than on the scattering length a. As to the
function β(z), by definition it does not contain any infor-
mation about ρc2. Therefore, in order to take into account
the existence of ρc2, one has to recognize that c0 is finite,
and the densities ρc1 and ρc2 are different. As a result,
the function β is determined in fact only in the region
|z| ≤ |zc1|.

Now let us consider the calculation of the ground state
energy E of the system when the density approaches ρ →
ρc1 ∼ |a|−3 from the low density side. As a rule, points
ρc1 and ρc2 are missed in calculations because of the lack
of the self consistency [12–14], which relates the linear
response function of system with its incompressibility K,

χ(q → 0, iω → 0) = −
(
d2E

dρ2

)−1

. (6)

As we shall see below, these points can give important
contributions to the ground state energy. To see it we ex-
press the energy of a system in the following form (see e.g.
[9]),

E(ρ) = Tk + EH

−1
2

∫
[χ(q, iω, g) + 2πρδ(ω)] v(q)

dq dω dg

g(2π)4
, (7)

where χ(q, iω, g) is the linear response function on the
imaginary axis and v(q) = gV (q), with V (q) being the
Fourier image of V (r). The integration over ω goes from
−∞ to +∞, while the integration over the coupling con-
stant g runs from zero to the real value of the coupling
constant, i.e. to g = 1. At the point ρ = ρc1 the linear
response function has a pole at the origin of coordinates

q = 0, ω = 0 due to (6). At the densities ρ > ρc1 the func-
tion χ(q, iω) has poles at finite values of the momentum q
and frequencies iω. This prevents the integration over iω,
making the integral in (7) divergent. Thus, we conclude
that it is the contribution of these poles that reflects the
system’s instability in the density range ρc1 ≤ ρ ≤ ρc2.
Note, that violations of (6) lead to serious errors in the cal-
culation of the ground state energy. Equation (7) can be
rewritten, explicitly accounting for the effective interpar-
ticle interaction R(q, iω, g), (see e.g. [14]), in the following
form

E(ρ) = Tk + EH

−1
2

∫ [
χ0(q, iω)

1 −R(q, iω, g)χ0(q, iω)
+ 2πρδ(ω)

]
v(q)

· dq dω dg

g(2π)4
. (8)

Here χ0 is the linear response function of noninteracting
particles, while χ is given by the following equation

χ(q, ω) =
χ0(q, ω)

1 −R(q, ω)χ0(q, ω)
. (9)

It is seen from (6) and (9) that the denominator (1−Rχ0)
vanishes at ρ → ρc1 while the radius of correlation tends
to infinity [10]. Thus, it is impossible to present the de-
nominator as a power series in Rχ0 approximating the
expansion by the finite number of terms. This result is
quite obvious since ρc1 is a singular point in the function
E(ρ) which makes it impossible to expand that function
in the vicinity of this point. Therefore, one should try to
satisfy (6) in order to get proper results for the ground
state calculations in the vicinity of the instability points.
Such an approach was suggested in [3,4,14] and is based
on the exact functional equation for the effective interac-
tion R(q, ω, g),

R(q, ω, g0) = g0v(q) − 1
2

δ2

δρ2(q, ω)

·
∫

χ0(k, iw)
1 −R(k, iw, g)χ0(k, iw)

v(q)

· dk dw dg

g(2π)4
. (10)

As a result, the linear response function χ given by (9)
automatically satisfies (6) [14]. Our preliminary calcula-
tions [14,15], based on (9) and applied to the case when
the scattering length is sufficiently large but finite, confirm
the result that ρc1 ∼ |a|−3.

Let us suppose for a while that the bare potential is
pure attractive. Then, the interval of the densities [0, ρc1]
within which the system is stable vanishes with the growth
of |a|. As a result, in the limit a = −∞ the incompressibil-
ity becomes negative K ≤ 0, making the considered sys-
tem completely unstable at any density. Thus, the point
at which a = −∞ is the only point of the system’s insta-
bility at all the densities. As soon as the scattering length
deviates from its infinite value, that is +∞ > a > −∞
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the system comes back to its stable state at list in the
range of the density values ρ < ρc1 ∼ |a|−3. It is of inter-
est to understand whether it is possible to prove by e.g.
numerical calculations, that ρc1 ∼ |a|−3 when a → −∞.
From our point of view, at least at this moment, the an-
swer is “no”. We are dealing with a system located in the
vicinity of a phase transition, which transforms it into a
strongly correlated one. As a result, it is hard to believe
that the numerical calculations could be reliable. On the
other hand, it is not really necessary to carry out numer-
ical calculations if the problem allows a qualitative anal-
ysis. It was argued above, that there exists the only pa-
rameter to characterize the system which is the scattering
length a. In fact the scattering length determines only the
specific point ρc1 at which the incompressibility vanishes,
separating the region of a dilute gas from the region of the
system’s instability. As soon as a → −∞ this last and the
only parameters vanishes, driving the point ρc1 ∼ |a|−3 of
the curve E(ρ) to the origin of coordinates. Thereafter, the
system becomes unstable at all densities. And vice versa,
as soon as the scattering length becomes finite the system
is stable at list within the interval ρ ≤ ρc1 ∼ |a|−3.

Note, that as it follows from our consideration, any
Fermi system possesses an equilibrium density and en-
ergy if the bare particle-particle interaction contains a re-
pulsive core and its attractive part is strong enough, so
that a → −∞. Indeed, at sufficiently small densities the
ground state energy is negative (since the incompressibil-
ity K ≤ 0) and the system will collapse until the core
stops the density growth. Therefore, the minimal value of
the ground state energy must be negative when the repul-
sive core will enter the play to prevent the system from
the further collapse. It is worth to remark, that super-
fluid correlations cannot stop the system squeezing, since
their contribution to the ground state energy being nega-
tive increases in the absolute value with the growth of the
density.

A liquid similar to the model one considered in this
paper exists in Nature. This is liquid 3He. If a helium
dimer exists, its bound energy does not exceed 10−4 meV
while the ground state energy of helium liquid is about
2 ∗ 10−1 meV per atom [16]. Because of this huge dif-
ference in binding energies, it is evident that there is no
essential contribution coming from the binding energy of
the dimer to the ground state energy of the liquid. In fact,
the numerical calculations show that the pair potential is
rather weak to produce the dimer He2 [16]. Thus, one can
reliably consider an infinite homogeneous system of He-
lium atoms as consisting of particles interacting via pair
potential, characterized by a very big but finite scattering
length |a| � r0. Let us make also the following additional
remark. It seems quite probable that the neutron-neutron
scattering length (a � −20 fm) is sufficiently large to per-
mit the neutron matter to have an equilibrium energy and
density [15]. Therefore, calculations of a neutron matter
satisfying (7) are quite desirable.

In summary, the homogeneous system of interacting
fermions was considered. It was shown that when the
scattering length a is negative and sufficiently large the
fermion matter becomes a strongly correlated system at
the densities ρ ∼ |a|−3. Therefore, the consideration of
such a system is connected to a number of problems which
yet persist and have to be resolved. At the same time, the
qualitative consideration presented above gives strong ev-
idences that the point ρc1 at which the incompressibility
vanishes is defined by ρc1 ∼ |a|−3 provided the scattering
length is the dominant parameter of the problem. Thus,
a homogeneous system composed of fermions, interacting
via a pure attractive potential, at a → −∞ is completely
unstable at all the densities, with the incompressibility as
a function of the density being always negative. As soon
as the density ρ goes to zero the incompressibility goes to
zero as well.
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